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Reminder

In Week 1, we introduced the basic notions of groups and rings, the foundation onto

which number manipulations rely.
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= We reviewed basic concepts in crystal symmetry: [101]
= \We demonstrated the restrictions on rotational symmetries; Plan (010)
. . . 101
= We built point group symmetries; ot
= We discussed Space groups. [0
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= \We also reviewed important concepts regarding primitive and conventional cells, as

well as the hard sphere model
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Overview

Divisibility
Prime numbers and Bézout relation

Vectorial spaces and basic Euclidean geometry

Miller indiCeS Etinne Bézout 31/03/1730 — 27/09/1783

Crystal planes
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Density and Free volume

From basic geomtric and vectorial consideration of the unit cell, one call calculate
key properties of materials such as density and free volume.
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Structure of Metals

= Most metals crystalize in the BCC or FCC structure:

Face-centered Cubic (FCC)

Al-Cu-Ni-Ag-Au-Fe...

Body-centered Cubic (BCC)

Cr-Fe-Mo-V-W-Ta...

Free volume . 26%

Iron exhibits polymorphism, ie has different
equilibrium structures at different
temperatures:

Fe: bcc for T > 1403°C

and T< 910°C
fcc for 910°C < T <1403°C

Free volume . 32%



Structure of Ceramics

Ceramics possess ionic or covalent (or polar) bonds that are very strong.

The structure can be compact like metals but more complex, as it depends on the ionic
radius of the different atoms, and their valence.

As a result, the crystallographic arrangements can be quite complex and they have a
higher ability to be quenched into an amorphous structure.

Some simple cases where the structure mostly depends on the ratio of the atomic radius:
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Structure of Ceramics

= Afew "high tech” ceramics with more complex structures:
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Structure of Ceramics

Concrete
gravier + quartz + ciment

=

Ciment is a mix of:

(Ca0),Si0, - (Ca0),SiO,
(Ca0),Al,0; - (Ca0),AlLO,Fe,O,

(0

Quartz Tétraédre (SiO,)*

(0




Crystal directions

= Crystal directions are lines that pass through at least two lattice points.

= The direction can be defined by an origin (all lattice point can be an origin) and the coordinate

of the other point in the lattice basis.

= The coordinates, which are relative integers, represent the Miller indices.

Crystal Direction : r = A(1a + 3b + 1c¢)

[131]




Basics of Euclidean Geometry

If we define an origin (0,0,0), all vectors are generated by the linear combination of (1,0,0), (0,1,0) and
(0,0,1), that in engineering are often referred to as i, j, k.
A vector a is then a linear combination: 3(ay, ay, a,) ER®: g = a,i +ayj +azk

dx
The following notation will be used: g = (ay>
az

Reminders:
= The magnitude (or norm) of a vector: ||a| = \/ax2+ay2 +az?

The scalar (or dot) product: an algebraic operation that provides the R-vector space with an inner
product. In cartesian coordinates, for two vectors in the orthonormal basis i, j, k, we have:

a.b = a.b, + a,b, + a,b,

= The dot product brings forward the notions of length, angle and orthogonality. A geometric definition
for two vectors that form an angle «a is:

= With a = ||al| and b = ||b||. It is the projection of a on b, or of b on a.

» |f a and b are orthogonal, then a.b = 0.

a-b=abcosu
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Basics of Euclidean Geometry

Cross product
The cross product of two vectors forming an angle a is a vector perpendicular to these

vectors, with the magnitude:

||laxb]|| = absina

In an orthonormal basis (i,j, k), the Cross product of two vectors a and b is:

Examples: Torques and the Lorentz force.

axb = —bXa

iXj=k /W —
Two parallel vectors have a zero cross product. br ~
See exercices in chapter 1&2 of the book. /Y‘ Y {>//
Calculation methods:
= Determinant: = Practical way: :
i j k ay\ [bx ay\ [ bx (L \of D
axb=lax ay a; (%)x by |=| ay | XL by i—( i+<ay by |k
bx by bZ az b, az b, ay b, Z



Basics of Euclidean Geometry

= Line:

Xa XB Xp — Xg

= Aline is defined by 2 points A = (3&1) and B = (3@) or a point A and a direction AB = (yB - yA> :
Zp Zp

= This can be expressed in two ways:

Zp — Zy

X

» Parametric equation: D = {M = <y> JAE R AM = AAB} —Dc = g 4+ A (xp->a )
Z

which we can write: d &= 9, + (4a-30)

g 24+~ (2a-39)

X oz +by+cz—d =0
» Asetoflinear equations: D ={M = |y | with }

7 a2 + boy+coz—dy =0
= Plane:
XA XB Xc Ny
= Aplane is defined by 3 points A = ()’A>, B = (3@;) and C = ()’c) or a point Aand a normal n = (ny>
Zy Zp Zc n,

X
» This can be expressed in a simple way as: P = {M = <y>,AM.n = 0}
Z

X

= One can extract the linear equation: for (a, b,c,d) € R*, P = {M = <y> ,ax + by +cz—d = 0}
Z

= Note that gcd(a, b, c,d) = 1, or they can be re-scaled, i.e. (a, b, ¢, d) are co-prime.

» Note that a line is the intersection of two planes ! 12



Basics of Euclidean Geometry

= Angles

= The angle between two vectors can be calcluated from the dot or the scalar products.

= Angle between a line and a plane: = Angle between two planes:
Complementary of the angle between the line Angle between their normals:
direction and the normal of the plan




Crystal directions

= Exemples:

= Negative indices are represented with a barre above the number.
= |f the origin is translated, the lines obtained remain parallel.

= |f the axis are rotated by 90° , so is the direction. However, the atomic
arrangement and physical properties along the direction remains the same from

symmetry ! 14



Crystal planes

= Crystal planes are planes that pass through at least 2 lattice points.
= They can be defined by the intercept of the plan with the basis axis:

Crystal plane:
r = 2a+i(3b-2a) + u(c-2a)
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Crystal planes: Miller indices

= [f the plane passes through the origin, one can translate the plane, or translate the origin, by one cell
parameter along a basis vector.

» Find the coefficients (a, 8,y) such that the plan intercepts the axes (x,y,z) at (aa, Ba, ya) (a being the
conventional lattice parameter, or the cube edge);

= [fthe plan is parallel to an axis, the intersection is considered to happen at infinity... (so the inverse
will be zero).

» Take the inverse of these coefficients and multiply them by their lowest common multiplier (Icm)

if one of (a, B,y) is smaller than 1, take the Icm of the coefficients greater than 1.

are the Miller indices of the plane

=  The coefficients h = M k= m@By) _ lem(@Biy)

B
= These coefficients are co-prime !

\Z

(@) I (b) | (c)
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N and Z - Divisibility

Divisibility, congruent and prime numbers are essential parts of number theory.

Euclidean division:

Given two integers (a,b) € Z?, with b # 0, there exist unigue integers q and r such that:

a=bg+rand0=<r<|p|,

Demonstration (hints):

Existence: consider (a,b) € Zx N*, and the ensemble E = {p€Z, a = bp}

E is not empty and is bounded.
E therefore has a maximum g suchthatq € E and Vp € E,p < q.

We define the relative integer ras r = a-bq:

« r>0since q € E and hence a = bq;
* r< b since otherwise gq+1 € E which is impossible.

Unicity: let’s (q,r) and (q’,r’) verify the relation above, we have: b(q’-q) = r-r’

Since r< |b| and r’ < |b|, |r-r| <|b|, which implies that |g-q’| <1,sog=q’and alsor=r’

Given two integers (a,b) € Z?, a divides b if there exists an integer g such that a = bq.

An equivalent definition is a divides b if and only if the rest r of the Euclidean division is
zero.

17


https://en.wikipedia.org/wiki/Uniqueness_quantification

N and Z - gcd and Ilcm

= We consider {xy, k € N,and x; € Z*}.

= The set of the dividers of the x;, admits a maximum, called the greatest common divider and
defined as gcd(xy).

It exists because the ensemble is not empty (1 divides all x; ) and it is bounded (by any of the x;).

Reminder: every set of finite number of integers admits an upper and lower bound.

= The set of the multiples of the x;, admits a minimum, called the lowest common multiple and is
defined as Icm(xy)

It exists since the product of the x;, is a common multiple, and it is bounded since it is greater than one.

Note that if the x;, are of different signs, we usually consider the gcd and lcm of their absolute
values.

= Modular arithmetic:
= Given an integer n > 1, called a modulus, two integers a and b are said to be congruent
modulo n, noted a = b[n] if n is a divisor of their difference.

18



N and Z - prime numbers

A prime number is a number greater than one that is only divided by 1 and itself.

p is a prime number if and only if a divides p implies that a =7 or a = p.

Fundamental theorem of arithmetic (unique factorization, or prime factorization theorem):

Every integer greater than 1 can be represented uniquely as a product of prime
numbers, up to the order of the factors.

In other words, for all integers n there exists prime numbers p; and integers n; (1 < i <
k), such that

Demonstration:

Existence: using strong induction: 2 is a prime. If it is true for all integers < n, either n is prime, or
there is two integers a and b such that n=ab. Since a <nand b <n, a and b have a representation in
prime numbers, and so also does n.

Uniqueness: Let’s n be the smallest integer to have two sets of primes p;, and g, such thatn =p,...p, =
q,....q; p, divides q,...q, so according to the Euclid lemma, p, divides one of the q;, which by re-
ordering could be q,. Since they are both primes, p, = q,. As a result, p,...p, = Q,....q; < n, which
contradicts the hypothesis on n.

Euclid’s lemma: If a prime p divides the product ab of two integers a and b, then p must divide at least
one of those integers a or b. We will see it soon using the relation of Bezout.

Prime numbers are the building blocks, the fundamental particles, of numbers. 19
A parallel can be made between prime number and bonds in materials !



N and Z - mutually prime numbers

= Two integers a and b are mutually prime (or co-prime, relatively prime), if gcd(a,b) = 1.
In other words, they don’t have a common prime number in their factorization.

Example: 6 and 25 are not prime numbers but are mutually prime: 6 =2x3 and 25 = 52

= This definition can be extended to n integers x; , which are called mutually prime if
ged(xy,...,x,) = 1.

= Theorem of Bézout:
For n non zero integers x;, gcd(x4, ...,x,) = d. Then, 3 (d4, ..., d,) € Z" such that
n

Z dl-xi = d
i=1
= Proof:

Let’'s consider the ensemble S = {3)1- u;x;,: (uy, ..., u,) € Z" and )1, u;x; > 0}

S is not empty (x;0r —x; € S) and it is then bounded and has a minimum d = Y1 ; d;x;.

d divides all Xy . if X = qu + 7, and 0 < e < d, then Ty = (1 — quk)xk + Zkii dl-xl- €S which
contradicts that d is the minimum of S, so necessarily r, = 0 and d divides x,.

d is the gcd: if 3 ¢, Vk, c/x;, then c/d, and hence necessarily ¢ < d.

So dis the greatest divider of all x,,, or d = gcd(x,,...,x,) and the (d,, ..., d,) verify the proposition.

= No need to know the proofs of theorems, but rather how to apply them to practical problems.
20



N and Z - mutually prime numbers

Important corollary to Bézout's theorem:
If n non zero integers x; are mutually prime, or co-prime, ie if gcd(xy, ..., x,) = 1,

then 3 (dy, ...,d,) € Z™" such that:
n
z dl-xl- =1
i=1

Important results from Bézout formulation:
= If for n integers x;, there is (d4, ..., d;,,) € Z™ such that ¥, d;x; = 1, then the x; are

mutually prime.
Straightforward since if § = gcd(x;) 1<i<n then 6| X}, d;x; and so § = 1.
= Corollary: V (a, b, c)(Z*)3,{c|b &gcd(a,b) = 1} = gcd(a,c) = 1.

= Gauss Theorem: V (a,b,c) € (Z*)3,{albc &gcd(a,b) =1} = alc

C
= For any three co-prime numbers (h,k,l), the plan shown here
o | cutting the axis at points A, B and C is a crystal plan.
0,0, 1/
oNsoo | b This can be shown using Bézout relation !

a A (1/h, 0, 0) 21




Crystal (or lattice) planes

C = This plan can be defined in two ways:

X

= P= {M = <y>,AM.n = 0} where n is the normal to the

VA
C (0,0, 1/1) pIane'

O \B(@O1k0 | b

X

a A (1/h, 0,0 = pP= {M = <y>,AM=AAB+uAC,(/Lu) € JRZ}
Z

The normal to the plane is given by N i) = ABXAC

In the cubic system, the direction [hkl] and the planes (hkl) are perpendicular !

In an orthonormal basis, the equation of the plane is obtained as follow:

PO = (x,y,2) € R /hx + ky + 1z = a}

Does it really intercept lattice points ?

Using Bézout on the co-prime h,k and | numbers defined previously, we hence know that:
3(ny,ny,n3) € Z3,hny + kn, + lng =1

We can deduct that the point P(n,a,n,a,nza) € 731(hkl).



SUMMARY

We introduced the basic notions of divisibility, prime and co-prime numbers, and
discussed several important concepts like the Bézout relation, or the Euclid lemma,
that can be useful in understanding discrete configurations such as Bravais lattices.

We also reviewed basic calculation in 3D geometry involving vectors, directions and
planes.

We use all these notions to review a foundational aspect of Materials Science that is
crystallography and the structure of materials. Notions discussed:

» Bravais lattices;

= Crystal directions and planes, Miller indices

= The cubic structure

* The hard sphere model

Next week
= We will show a few examples of using number theory to approach crystal
planes, reciprocal spaces and X-ray diffraction.
= We will review some properties of real and complex numbers;
= We will give some examples as to how to manipulate them, and of their use in
Materials Science and engineering.

23



