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Reminder
§ In Week 1, we introduced the basic notions of groups and rings, the foundation onto 

which number manipulations rely. 

§ We reviewed basic concepts in crystal symmetry:
§ We demonstrated the restrictions on rotational symmetries; 
§ We built point group symmetries;
§ We discussed Space groups. 

§ We also reviewed important concepts regarding primitive and conventional cells, as 
well as the hard sphere model
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Overview

§ Divisibility

§ Prime numbers and Bézout relation

§ Vectorial spaces and basic Euclidean geometry

§ Miller indices

§ Crystal planes

Etinne Bézout 31/03/1730 – 27/09/1783



From basic geomtric and vectorial consideration of the unit cell, one call calculate
key properties of materials such as density and free volume. 

- Density: 𝜌 = !!"#$% &'( )*+" ,'--×#!"#$%

$)*+" ,'--

-Packing fraction: 

-Direction and planes of high density

Density and Free volume
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Body-centered Cubic (BCC)

Free volume :  32%

Iron exhibits polymorphism, ie has different
equilibrium structures at different
temperatures:

Fe: bcc for T > 1403ºC
and     T <   910ºC

fcc for 910ºC < T < 1403ºC

Structure of Metals

Face-centered Cubic (FCC)

Free volume :  26%

Al – Cu – Ni – Ag – Au – Fe … 

Cr – Fe – Mo – V – W – Ta … 

§ Most metals crystalize in the BCC or FCC structure: 
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CsClNaCl
RCs+ = 1.67 Ǻ

RNa+ = 1.02 Ǻ
RCl- = 1.81 Ǻ

RCl- = 1.81 Ǻ

6 Coordination           8

0.56       Rapport Rc/Ra              0.92

§ Ceramics possess ionic or covalent (or polar) bonds that are very strong. 

§ The structure can be compact like metals but more complex, as it depends on the ionic 
radius of the different atoms, and their valence. 

§ As a result, the crystallographic arrangements can be quite complex and they have a 
higher ability to be quenched into an amorphous structure. 

§ Some simple cases where the structure mostly depends on the ratio of the atomic radius: 

Cl

Cs

Cl

Na

Structure of Ceramics



BaTiO3
PZT (Pb(Zr,Ti)O3

§ A few "high tech” ceramics with more complex structures: 

Ba2+

O2-

Ti4+

Ferroélectrique

Ba2+ Mo

Y3+

Cu2+

YBa2Cu3O7

Supraconducteur

MoSi2
Eléments chauffants

Si
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Argile (kaolin)

(Si2O5)Al2(OH)4

Concrete
gravier + quartz + ciment

Ciment is a mix of: 

(CaO)2SiO2 - (CaO)3SiO2
(CaO)3Al2O3 - (CaO)4Al2O3Fe2O3

O

Si

Quartz Tétraèdre (SiO4)4- Si
O
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Structure of Ceramics
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Crystal Direction : r = l(1a + 3b + 1c)

[1 3 1]

Crystal directions
§ Crystal directions are lines that pass through at least two lattice points.
§ The direction can be defined by an origin (all lattice point can be an origin) and the coordinate 

of the other point in the lattice basis.  
§ The coordinates, which are relative integers, represent the Miller indices. 

a
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§ If we define an origin (0,0,0), all vectors are generated by the linear combination of (1,0,0), (0,1,0) and 
(0,0,1), that in engineering are often referred to as 𝒊, 𝒋, 𝒌.

§ A vector 𝒂 is then a linear combination: ∃(𝑎! , 𝑎" , 𝑎#) ∈ ℝ$:

§ The following notation will be used: 

§ Reminders: 
§ The magnitude (or norm) of a vector:  𝒂 =

§ The scalar (or dot) product: an algebraic operation that provides the ℝ-vector space with an inner 
product. In cartesian coordinates, for two vectors in the orthonormal basis 𝒊, 𝒋, 𝒌, we have: 

          𝒂. 𝒃 = 𝑎!𝑏! + 𝑎"𝑏" + 𝑎#𝑏#

§ The dot product brings forward the notions of length, angle and orthogonality. A geometric definition 
for two vectors that form an angle 𝛼 is: 

§ With 𝑎 = 𝒂  and 𝑏 = 𝒃 . It is the projection of 𝒂 on 𝒃, or of 𝒃 on 𝒂. 
§ If 𝒂 and b are orthogonal, then 𝒂. 𝒃 = 0.

Basics of Euclidean Geometry



11

Cross product
§ The cross product of two vectors forming an angle 𝛼	 is a vector perpendicular to these

vectors, with the magnitude: 
𝒂×𝒃 = 𝑎𝑏sin𝛼

§ In an orthonormal basis (i,j,k), the Cross product of two vectors 𝒂 and b is:  

§ Examples: Torques and the Lorentz force.   

§ 𝒂×𝒃 = −𝒃×𝒂
§ 𝒊×𝒋 = 𝒌
§ Two parallel vectors have a zero cross product. 
§ See exercices in chapter 1&2 of the book. 

§ Calculation methods:

§ Determinant:  § Practical way: :

𝑎!
𝑎"
𝑎#

×
𝑏!
𝑏"
𝑏#

=
𝑎!
𝑎"
𝑎#

×
𝑏!
𝑏"
𝑏#

𝒊 −
𝑎!
𝑎"
𝑎#

×
𝑏!
𝑏"
𝑏#

𝒋 +
𝑎!
𝑎"
𝑎#

×
𝑏!
𝑏"
𝑏#

𝒌

Basics of Euclidean Geometry
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§ Line:

§ A line is defined by 2 points 𝐴 =
𝑥%
𝑦%
𝑧%

 and B =
𝑥&
𝑦&
𝑧&

 or a point A and a direction 𝑨𝑩 =
𝑥& − 𝑥%
𝑦& − 𝑦%
𝑧& − 𝑧%

	:

§ This can be expressed in two ways: 

§ Parametric equation:  𝐷 = 𝑀 =
𝑥
𝑦
𝑧
	∃𝜆 ∈ ℝ, 𝑨𝑴 = 𝜆𝑨𝑩  

which we can write: 

§ A set of linear equations: 𝐷 = 𝑀 =
𝑥
𝑦
𝑧

𝑤𝑖𝑡ℎ

§ Plane:

§ A plane is defined by 3 points 𝐴 =
𝑥%
𝑦%
𝑧%

, B =
𝑥&
𝑦&
𝑧&

and C =
𝑥'
𝑦'
𝑧'

or a point A and a normal 𝒏 =
𝑛!
𝑛"
𝑛#

§ This can be expressed in a simple way as: 𝑃 = 𝑀 =
𝑥
𝑦
𝑧
, 𝑨𝑴. 𝒏 = 0  

§ One can extract the linear equation: for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ(, 𝑃 = 𝑀 =
𝑥
𝑦
𝑧
, 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑 = 0

§ Note that gcd 𝑎, 𝑏, 𝑐, 𝑑 = 1, or they can be re-scaled, i.e. (𝑎, 𝑏, 𝑐, 𝑑) are co-prime. 
§ Note that a line is the intersection of two planes !

Basics of Euclidean Geometry



§ Volume 
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§ Angles

§ The angle between two vectors can be calcluated from the dot or the scalar products.

§ Angle between a line and a plane: 
Complementary of the angle between the line 
direction and the normal of the plan 

§  Angle between two planes: 
Angle between their normals: 

x x x

Basics of Euclidean Geometry

P

P
C



!"#"$ !""#$

§ Negative indices are represented with a barre above the number.
§ If the origin is translated, the lines obtained remain parallel. 
§ If the axis are rotated by 90°, so is the direction. However, the atomic 

arrangement and physical properties along the direction remains the same from 
symmetry !

[111]

Crystal directions
§ Exemples:
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Crystal planes

a

b

c

Crystal plane:

r = 2a+l(3b-2a) + µ(c-2a)

2a

3b

1c

1
2 

1
3 

1
1 

è
ç
ç
æ

ø
÷
÷
ö1

2   13   11  ´ 6  = (3 2 6) 

§ Crystal planes are planes that pass through at least 2 lattice points.
§ They can be defined by the intercept of the plan with the basis axis: 



§ If the plane passes through the origin, one can translate the plane, or translate the origin, by one cell 
parameter along a basis vector. 

§ Find the coefficients (𝛼, 𝛽, 𝛾) such that  the plan intercepts the axes (x,y,z) at (𝛼𝑎, 𝛽𝑎, 𝛾𝑎) (𝑎 being the 
conventional lattice parameter, or the cube edge);

§ If the plan is parallel to an axis, the intersection is considered to happen at infinity… (so the inverse 
will be zero). 

§ Take the inverse of these coefficients and multiply them by their lowest common multiplier (lcm)

if one of (𝛼, 𝛽, 𝛾) is smaller than 1, take the lcm of the coefficients greater than 1. 

§ The coefficients ℎ = ./0(2,4,5)
2

 , k = ./0(2,4,5)
4

, 𝑙 = ./0(2,4,5)
5

 are the Miller indices of the plane

§ These coefficients are co-prime !  

(110) (111) (412)

Crystal planes: Miller indices
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ℕ and ℤ - Divisibility
§ Divisibility, congruent and prime numbers are essential parts of number theory.

§ Euclidean division: 
Given two integers (a,b) ∈ ℤ2, with b ≠ 0, there exist unique integers q and r such that:
 
a = bq + r and 0 ≤ r < |b|,

§ Demonstration (hints): 

Existence: consider (a,b) ∈ ℤx ℕ*, and the ensemble E = {p∈ ℤ, a≥ bp}
• E is not empty and is bounded. 
• E therefore has a maximum 𝑞 such that 𝑞 ∈ 𝐸 and ∀𝑝 ∈ 𝐸, 𝑝 ≤ 𝑞.
• We define the relative integer r as r = a-bq:

• r ≥ 0 since 𝑞 ∈ 𝐸 and hence a≥ bq;
• r < b since otherwise q+1 ∈ 𝐸 which is impossible. 

Unicity: let’s (q,r) and (q’,r’) verify the relation above, we have: b(q’-q) = r-r’

Since r < |b| and r’ < |b|, |r-r’| <|b|, which implies that |q-q’| <1, so q = q’ and also r = r’ 

§ Given two integers (a,b) ∈ ℤ2, a divides b if there exists an integer q such that a = bq.

§ An equivalent definition is a divides b if and only if the rest r of the Euclidean division is 
zero. 

https://en.wikipedia.org/wiki/Uniqueness_quantification
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ℕ and ℤ - gcd and lcm
§ We consider 𝑥!, 𝑘 ∈ ℕ, 𝑎𝑛𝑑 𝑥! ∈ ℤ∗ .

§ The set of the dividers of the 𝑥! admits a maximum, called the greatest common divider and 
defined as gcd(𝑥!).

It exists because the ensemble is not empty (1 divides all 𝑥)) and it is bounded (by any of the 𝑥)).

Reminder: every set of finite number of integers admits an upper and lower bound.

§ The set of the multiples of the 𝑥! admits a minimum, called the lowest common multiple and is 
defined as lcm(𝑥!)

It exists since the product of the 𝑥) is a common multiple, and it is bounded since it is greater than one. 

Note that if the 𝑥! are of different signs, we usually consider the gcd and lcm of their absolute 
values. 

§ Modular arithmetic: 
§ Given an integer n > 1, called a modulus, two integers 𝑎 and 𝑏 are said to be congruent 

modulo 𝑛, noted 𝑎 ≡ 𝑏 𝑛  if n is a divisor of their difference. 
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ℕ and ℤ - prime numbers
§ A prime number is a number greater than one that is only divided by 1 and itself.

§ p is a prime number if and only if a divides p implies that a =1 or a = p.

§ Fundamental theorem of arithmetic (unique factorization, or prime factorization theorem):

§ Every integer greater than 1 can be represented uniquely as a product of prime 
numbers, up to the order of the factors. 

     In other words, for all integers n there exists prime numbers pi and integers ni (1 ≤ 𝑖 ≤
𝑘), such that 

𝑛 =>
#$%

!

𝑝#
&*

§ Prime numbers are the building blocks, the fundamental particles, of numbers. 
§ A parallel can be made between prime number and bonds in materials  !

§ Demonstration: 
§ Existence: using strong induction: 2 is a prime. If it is true for all integers < n, either n is prime, or 

there is two integers a and b such that n=ab. Since a < n and b < n, a and b have a representation in 
prime numbers, and so also does n.

§ Uniqueness: Let’s n be the smallest integer to have two sets of primes pi and qi such that n = p1…pk = 
q1….ql. p1 divides q1…ql, so according to the Euclid lemma, p1 divides one of the qi, which by re-
ordering could be q1. Since they are both primes, p1 = q1. As a result, p2…pk = q2….ql  < n, which 
contradicts the hypothesis on n. 

§ Euclid’s lemma: If a prime p divides the product ab of two integers a and b, then p must divide at least 
one of those integers a or b. We will see it soon using the relation of Bezout.  
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ℕ and ℤ - mutually prime numbers
§ Two integers a and b are mutually prime (or co-prime, relatively prime), if gcd(a,b) = 1.
     In other words, they don’t have a common prime number in their factorization. 

     Example: 6 and 25 are not prime numbers but are mutually prime: 6 =2x3 and 25 = 52 

§ This definition can be extended to n integers xi , which are called mutually prime if  
gcd(x1,…,xn) = 1. 

§ Theorem of Bézout:  
     For n non zero integers 𝑥#, 𝑔𝑐𝑑 𝑥%, … , 𝑥& = 𝑑.	Then, ∃ 𝑑%, … , 𝑑& ∈ ℤ& such that 

D
#$%

&

𝑑#𝑥# = 𝑑

§ Proof: 
      Let’s consider the ensemble 𝑆 = ∑+,-. 𝑢+𝑥+ , : 𝑢-, … , 𝑢. ∈ ℤ.	𝑎𝑛𝑑 ∑+,-. 𝑢+𝑥+ 	> 0
      S is not empty (𝑥-𝑜𝑟 −𝑥-∈ S) and it is then bounded and has a minimum d = ∑+,-

. 𝑑+𝑥+. 
      d divides all 𝑥) : if 𝑥) = 𝑑𝑞) + 𝑟), and 0 < 𝑟) < 𝑑,	then 𝑟) = (1 − 𝑑)𝑞))𝑥) + ∑)/+ 𝑑+𝑥+ 	 ∈ 𝑆 which 
contradicts that d is the minimum of S, so necessarily 𝑟) = 0 and d divides 𝑥) .	
      d is the gcd: if ∃	𝑐, ∀𝑘, 𝑐/𝑥), then 𝑐/𝑑, and hence necessarily 𝑐 ≤ 𝑑. 
      So d is the greatest divider of all 𝑥), or d = gcd(x1,…,xn) and the (d1, …, dn) verify the proposition. 

§ No need to know the proofs of theorems, but rather how to apply them to practical problems. 
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§ For any three co-prime numbers (h,k,l), the plan shown here 
cutting the axis at points A, B and C is a crystal plan.

      This can be shown using Bézout relation ! 

§ Important corollary to Bézout’s theorem: 
     If n non zero integers xi are mutually prime, or co-prime, ie if 𝑔𝑐𝑑 𝑥%, … , 𝑥& = 1, 
     then ∃ 𝑑%, … , 𝑑& ∈ ℤ& such that:

D
#$%

&

𝑑#𝑥# = 1

§ Important results from Bézout formulation: 
§ If for n integers xi, there is 𝑑%, … , 𝑑& ∈ ℤ& such that ∑#$%& 𝑑#𝑥# = 1, then the xi are 

mutually prime. 
     Straightforward since if 𝛿 = gcd(𝑥+) -0+0. then |𝛿  ∑+,-. 𝑑+𝑥+ and so 𝛿 = 1.	

§ Corollary: ∀ 𝑎, 𝑏, 𝑐 ℤ∗ ', |𝑐 𝑏	& gcd 𝑎, 𝑏 = 1	 ⟹ gcd 𝑎, 𝑐 = 1. 

§ Gauss Theorem: ∀ 𝑎, 𝑏, 𝑐 ∈ ℤ∗ ', |𝑎 𝑏𝑐	& gcd 𝑎, 𝑏 = 1	 ⟹ 𝑎|𝑐

ℕ and ℤ - mutually prime numbers
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§ This plan can be defined in two ways:

§ 𝑃 = 𝑀 =
𝑥
𝑦
𝑧
, 𝑨𝑴. 𝒏 = 0  where n is the normal to the 

plane;

§ 𝑃 = 𝑀 =
𝑥
𝑦
𝑧
, 𝑨𝑴 = 𝜆𝑨𝑩 + 𝜇𝑨𝑪, (𝜆, 𝜇) ∈ ℝ1

Crystal (or lattice) planes

§ The normal to the plane is given by 𝑵(𝒉𝒌𝒍) = 	𝑨𝑩×𝑨𝑪	

§ In the cubic system, the direction [hkl] and the planes (hkl) are perpendicular !

§ In an orthonormal basis, the equation of the plane is obtained as follow:

𝒫%
(-!.) = 𝑥, 𝑦, 𝑧 ∈ ℝ'/ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 = 𝑎

§ Does it really intercept lattice points ? 
§ Using Bézout on the co-prime h,k and l numbers defined previously, we hence know that:

 ∃ 𝑛%, 𝑛/, 𝑛' ∈ ℤ', ℎ𝑛% + 𝑘𝑛/ + 𝑙𝑛' = 1

§ We can deduct that the point 𝑃(𝑛%𝑎, 𝑛/𝑎, 𝑛'𝑎) ∈ 𝒫%
(-!.).
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SUMMARY
§ We introduced the basic notions of divisibility, prime and co-prime numbers, and 

discussed several important concepts like the Bézout relation, or the Euclid lemma, 
that can be useful in understanding discrete configurations such as Bravais lattices. 

§ We also reviewed basic calculation in 3D geometry involving vectors, directions and 
planes.

§ We use all these notions to review a foundational aspect of Materials Science that is 
crystallography and the structure of materials. Notions discussed: 
§ Bravais lattices;
§ Crystal directions and planes, Miller indices
§ The cubic structure
§ The hard sphere model 

§ Next week 
§ We will show a few examples of using number theory to approach crystal 

planes, reciprocal spaces and X-ray diffraction. 
§ We will review some properties of real and complex numbers;
§ We will give some examples as to how to manipulate them, and of their use in 

Materials Science and engineering. 


